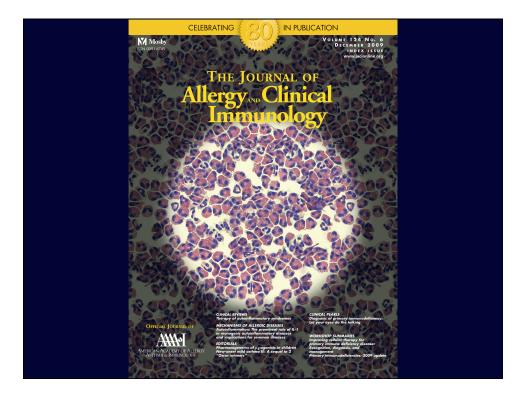
Biology of Eosinophils

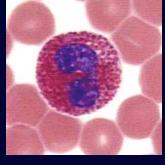
Bruce S. Bochner, M.D. Cosner Scholar in Translational Research Professor of Medicine and Director Division of Allergy and Clinical Immunology Johns Hopkins Asthma and Allergy Center Baltimore, Maryland

Disclosures


- I have consulted for GSK and Ception/Cephalon on anti-IL5 therapies
- I currently consult for Sanofi-Aventis on various therapies including anti-eosinophil therapies

Grants and Research Support: NIAID R01 AI72265, Sanofi-Aventis, Dana Foundation

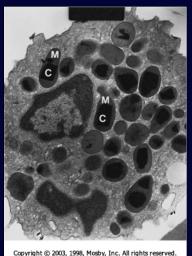
Other: Patents on Siglec-8 with my university


Learning Objectives

- 1) Basics of eosinophil biology, including hematopoiesis, phenotype and function
- 2) Overview of diseases associated with increased numbers of eosinophils
- 3) Features of hypereosinophilic syndromes

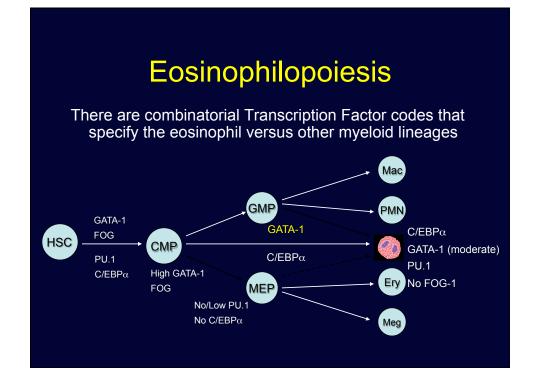
Eosinophils 101

- Identified by Paul Ehrlich in 1879 and named based on the staining: 'eosin (acid stain) loving'


Eosinophils 101

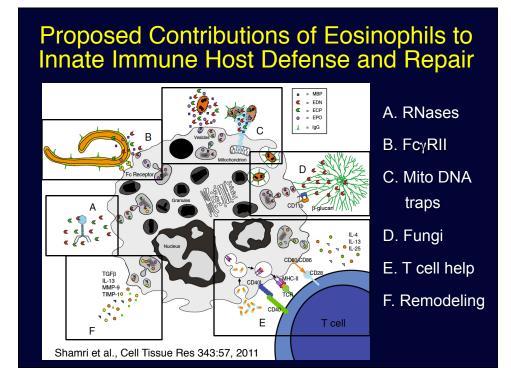
-Granules contain cationic proteins: major basic protein (core) eosinophil cationic protein eosinophil-derived neurotoxin

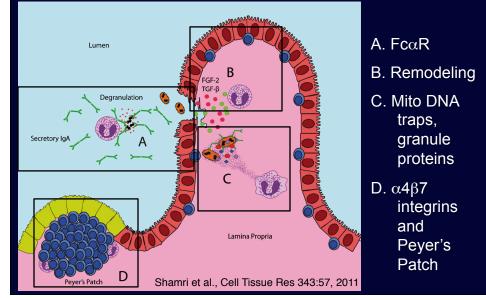
eosinophil peroxidase


- Contain and release cytokines (interleukins, growth factors) and lipid mediators (leukotrienes)

- Mediate parasite defense, allergic responses, tissue inflammation, immune modulation

copyright @ 2003, 1990, Hoaby, Inc. All rights reserve


Middleton's Allergy: Principles and Practice


Eosinophil surface phenotype	$\begin{array}{c} \textbf{Chemokine,}\\ \textbf{complement and}\\ \textbf{other chemotactic}\\ \textbf{factor receptors}\\ CD35 & CCR1\\ CD88 & CCR3\\ C3aR & CCR6\\ PAFR & CXCR1\\ LTB_4R & CXCR1\\ LTB_4R & CXCR4\\ \textbf{fMLPR} & CRTH2\\ Histamine\\ (H4 receptor)\\ \end{array}$	desion molecules CD11a CD44 CD11b CD49d CD11c CD49f CD15 CD62L CD15s CD162 CD18 CD174 CD29 cd integrin β7 integrin	Apoptosis, signaling and others CD9 CD97 CD17 CD98 CD24 CD99 CD30 CD137 CD30 CD139 CD37 CD148 CD39 CD149 CD43 CD151 CD52 CD165 CD65 Siglec-8 CD65 Siglec-10 CD66 [†] LIR1 CD76 LIR2 CD81 LIB3	
	Immunoglobulin recep and other members of the immunoglobulin superfamily CD4 CD58 CD16 [†] CD66 CD28 CD89 CD31* CD100	of	CD82 LIR7 CD86 [†] CD92 CD95 Cytokines CD25 CD124	
	$\begin{array}{c} \text{CD31} & \text{CD101} \\ \text{CD32} & \text{CD101} \\ \text{CD33} & \text{HLA class} \\ \text{CD47} & \text{HLA-DR}^{\dagger} \\ \text{CD48} & \text{Fc}_{\varepsilon}\text{RI}^{\ast\ast} \\ \text{CD50}^{\ast} \\ \text{CD54}^{\ast\dagger} \end{array}$	CD46 I CD55 CD59 CD87 PAR-2	CD116 CD125 CD117 CD131 CD119 IL-9R CD120 IL-13R CD123 TGFβR	Bochner 2004 JACI 113:3

Why do we have eosinophils?

- · Eosinophils go back to metazoan species
 - All five classes of vertebrates have a cell with the distinct physical and staining characteristics one associates with an eosinophil.
 - That makes eosinophils at least 350-400 million years old.
- Eosinophil granule protein genes and their cousins extend well beyond fish.
- They are best known for their role in host defense against parasitic infections, especially those cause by certain worms
- They therefore probably have a conserved role in innate immunity

Proposed Contributions of Eosinophils to Innate Immune Host Defense in the Gut

Key Concepts on Eosinophilia

- Look at total eosinophil counts ONLY (% x WBC)
- Growth and survival factors include:
 - IL-3
 - IL-5
 - GM-CSF

- Selective accumulation facilitated by eotaxins (via CCR3), adhesion molecules (e.g., VLA-4, VCAM-1), and survival factors (especially IL-5 and GM-CSF)

- Tissue eosinophilia can occur without blood or

bone marrow increases

Differential Diagnosis of Eosinophilia

"Allergic" Diseases

Atopic and related diseases Medication-related eosinophilias

Infectious Diseases Parasitic infections, (helminths) Specific fungal infections

Hematologic/Neoplastic Disorders

- Hypereosinophilic syndrome Leukemia Lymphomas Tumor-associated
- Mastocytosis

Immunologic Reactions

Specific immune deficiency diseases Transplant rejection

Endocrine Hypoadrenalism

Diseases with Specific Organ Involvement

- Skin (e.g., episodic angioedema with eosinophilia, eosinophilic cellulitis)
- Pulmonary (e.g., eosinophilic pneumonias)
- Gastrointestinal (e.g., eosinophilic gastroenteritis)
- Neurologic (e.g., eosinophilic meningitis)
- Rheumatologic (e.g., Churg-Strauss eosinophilia-myalgia syndrome)
 Cardiac (e.g., hypersensitivity myocarditis, Churg-Strauss syndrome,
 - hypereosinophilic syndromes)
- Renal (e.g., drug-induced interstitial nephritis, cholesterol embolization, eosinophilic cystitis)

Middleton's Allergy: Principles and Practice

Eosinophilia: when the allergist worries

Normal blood levels: up to an absolute count of 500/mm³

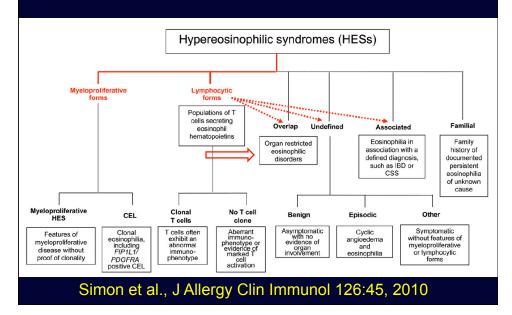
500-1500/mm³

Allergic Rhinitis Allergic Asthma Food allergy Urticaria Eosinophilic esophagitis (or normal)

1500-5000/mm³ Non-allergic asthma

Nasal polyposis

Helminth infection

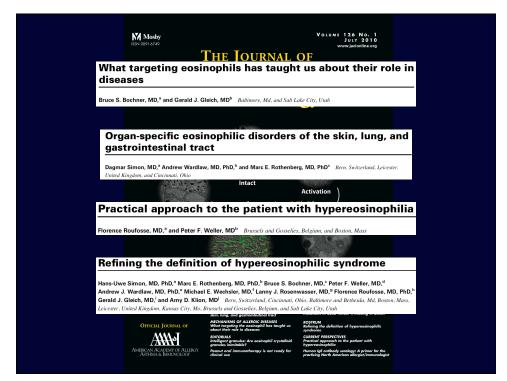

>5000/mm³

Leukemia Episodic eosinophilia Idiopathic HES

- Churg-Strauss Syndrome
- Drug reactions

ABPA


Classification of Eosinophilic Disorders


When you want to get rid of eosinophils there are many ways to do this

- Inhibit hematopoiesis
- Inhibit adhesion
- Inhibit migration
- Inhibit survival signals
- Actively induce apoptosis

Examples of therapies selectively targeting eosinophils

Anti-IL-5 and IL-5R (mepolizumab, reslizumab, benralizumab); CCR3 and its ligands; Siglec-8

